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Linear stability of the incompressible flow along a streamwise corner is studied by 
solving the two-dimensional eigenvalue problem governed by partial differential 
equations. It is found that this fully three-dimensional flow is subject to inviscid 
instability due to the inflectional nature of the streamwise velocity profile. The higher 
growth rates for the inviscid instability mode, which is symmetric about the corner 
bisector, as compared to the viscous Tollmien-Schlichting instability operative away 
from the corner, is consistent with the experimental findings that the corner flow 
transitions to turbulence earlier than the two-dimensional Blasius flow away from the 
corner. 

1. Introduction 
The last three decades have seen significant progress towards better understanding 

of the stability of flow over two-dimensional and swept wings. These advancements 
have greatly improved our prediction and control capabilities of the laminar-turbulent 
transition process. For further progress it is important to enhance our understanding 
of the effects of geometric complications such as wing-body junction, finite wing span, 
and surface roughness elements, which play an important role in the overall transition 
process. Here we consider the laminar stability of the flow along a streamwise corner, 
which can be considered as a model for the flow near a wing-body junction. The 
instability mechanisms induced by the streamwise corner will also help in assessing the 
effect of sidewalls on transitional and turbulent wind tunnel experiments. Under- 
standing of the instability will also help us devise techniques for controlling transition 
in the corner flow. 

The viscous flow along a corner that is formed by the intersection of two semi- 
infinite perpendicular plates (figure 1) is three-dimensional close to the corner due to 
the strong interaction of the boundary layers on the two perpendicular walls. The basic 
laminar flow permits a similarity solution under the boundary layer assumption. The 
governing self-similar boundary layer equations appropriate for the corner region, 
which blends with the two-dimensional Blasius boundary layer and the outer potential 
flow away from the cornerline, were obtained by Rubin (1966). Numerical solutions to 
these governing equations (Rubin & Grossman 1971 ; Ghia 1975) exhibit a secondary 
cross-stream flow which is directed towards the corner along the two walls and directed 
away from the corner along the corner bisector. The resulting streamwise velocity 
profile along the corner bisector is inflectional in nature. Therefore the three- 
dimensional boundary layer near a streamwise corner is susceptible to inviscid 
instability, while the two-dimensional Blasius counterpart is only subjected to milder 
viscous instability. 

Experiments on corner layers by Barclay (1973), El-Gamal & Barclay (1978) and 
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FIGURE 1. Streamwise corner flow geometry and the coordinate system used. 

Zamir & Young (1970, 1979) have yielded contrasting results for the laminar self- 
similar velocity profile. The differences among these experimental results highlight the 
exceptional sensitivity of the laminar corner layer solution to differences in the shape 
of the leading edge and streamwise pressure gradients (see Zamir 1981). This sensitivity 
to measurements can be attributed to the early instability of the corner layer compared 
to the Blasius boundary layer. Based on his favourable pressure gradient experiments, 
Zamir (198 1) observes that the zero-pressure-gradient corner layer becomes transitional 
at a Reynolds number of around lo4, while the critical Reynolds number for a zero- 
pressure-gradient flat-plate boundary layer is an order of magnitude higher, around 

Lakin & Hussaini (1984) considered the stability of the corner flow sufficiently away 
from the cornerline in the blending region, where the streamwise and wall normal 
velocities are given by the Blasius solution with a superimposed secondary spanwise 
velocity induced by the corner. Solutions to the stability equations were obtained with 
a critical layer analysis. Recently, Dhanak (1993) studied the stability of the blending 
boundary layer numerically, employing the same governing equations as those of 
Lakin & Hussaini but emphasized the importance of enforcing appropriate symmetry 
boundary conditions along the corner bisector, instead of the usual asymptotic 
boundary conditions at infinity for the one-dimensional problem. Sufficiently far away 
from the cornerline stability results for the Blausius profile were obtained and as the 
cornerline is approached the blending layer was observed to become increasingly 
unstable. The one-dimensional stability analysis ignores any spanwise variation of the 
mean flow, whereas the actual flow is three-dimensional and the approach towards the 
Blasius boundary layer is only algebraic (Pal & Rubin 1971). The blending layer 
stability results display the correct qualitative trend which agrees with experimental 

105. 



Inviscid instability of streamwise corner flow 189 

results but the quantitative predictions need to be verified with a two-dimensional 
stability analysis. 

Here we will retain the strong dependence of the corner boundary layer along the 
two wall normal directions and consider the stability of this flow with a locally parallel 
assumption along the streamwise direction. The resulting two-dimensional stability 
analysis results in an eigenvalue problems which poses far greater computational 
challenges than the one-dimensional counterpart. To simplify the analysis and 
computations, we will restrict attention to an inviscid analysis through an extended 
Rayleigh equation (a partial differential equation). The inviscid analysis should be 
adequate to capture the qualitative features of the dominant instability mechanism 
arising from the inflectional nature of the streamwise velocity component. 

Instability of inviscid modes in a boundary layer does not guarantee that they remain 
unstable in the corresponding viscous problem. But there are a number of examples in 
fluid mechanics where inviscid modes are also found to be unstable at finite Reynolds 
numbers. For example, Stuart (see Gregory, Stuart & Walker 1955) considered the 
three-dimensional boundary layer on a rotating disk and found crossflow instability 
using an inviscid analysis. Much later Malik, Wilkinson & Orszag (1981) performed a 
corresponding viscous analysis and found the boundary layer to be unstable to 
crossflow disturbances provided the Reynolds number is above a finite critical value. 
In fact, this inviscid instability is the main cause of transition in a swept-wing boundary 
layer. Similarly, the second-mode disturbance in a hypersonic boundary layer (Mack 
1984) is inviscid in nature but is also captured in viscous analysis. The second-mode 
instability is found to be responsible for hypersonic boundary layer transition at finite 
Reynolds numbers (Stetson et al. 1983). 

2. Mathematical formulation: mean flow 
The viscous flow along the corner that is formed by the intersection of two semi- 

infinite perpendicular flat plates (figure 1) can be simplified with the boundary layer 
theory. Unlike flat plate and infinite wing geometries, the corner flow is three- 
dimensional (all three velocity components exist and they are functions of all three 
coordinates). Sufficiently far way from both the flat plates (region I) the flow can be 
modelled as potential flow. Close to the plates but far away from the corner line (regions 
I1 and 111) the mean flow is nearly two-dimensional and depends only on the x- and 
y-coordinates in region 11 and on the x- and z-coordinates in region 111. These two- 
dimensional blending boundary layers are primarily Blasius boundary layers, but with 
a superposed transverse flow. In the region close to the cornerline (region IV) the 
coupling that is created by the mutual interaction results in a strongly three- 
dimensional boundary layer. The flow in this corner region, termed the ‘corner layer’ 
is the subject matter of this paper. 

The governing three-dimensional boundary layer equations appropriate within the 
corner layer can be written in a self-similar form as follows (Rubin 1966): 
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where i j  and [ are the non-dimensional boundary layer coordinates along the wall 
normal directions y and z given by 

(2) 
Z r" = (2xx*)1/2 Re1/' and [ = (2xx*)l12 Re1/', 

where the Reynolds number is defined as Re = Ux*/v. The dependent variables 6,  0 ,  
$ and p are the non-dimensional velocity components and pressure and are related to 
their dimensional values u, v and w and p through the following relations: 

Here Uis the free stream velocity, x* is the dimensional distance from the leading edge, 
p and v are the density and kinematic viscosity of the fluid. The above self-similar form 
of the corner layer avoids explicit dependence of the corner layer equations (1) on the 
streamwise direction, x.  Equation (1) is only the first of an infinite set of equations that 
can be obtained for the asymptotic solution of the corner layer and is exact in the limit 
of Re+ co. 

The elliptic nature of the governing equation (1) requires boundary - -  conditions for 
zi, 0, $ on the four bounding lines i j  = 0, [ = 0, f = f m a s  + 00, = cmas+ co. The 
proper boundary conditions on the two walls are no-slip and no-penetration. The 
asymptotic boundary conditions appropriate in the limit of cmas+ 00, and f < c, 
should blend with the blending boundary layer (region 11). By symmetry the same 
boundary condition applies in the limit of + 00. These asymptotic boundary 
conditions can be expressed as the following expansion in inverse powers of distance 
from the cornerline (Pal & Rubin 1971): 

bmas bmas 

The zeroth-order boundary conditions, ti,, 0, and a,,, are nothing but the Blasius 
boundary layer solutions. The first-order streamwise and wall normal velocities can be 
shown to be zero (Pal & Rubin 1971) and the only first-order effect of the corner is to 
induce the secondary flow, G1, towards the corner along the bottom wall. The higher- 
order terms in the above equation have been obtained by Pal & Rubin (1971) by 
requiring a simultaneous matching of the corner layer with the outer potential flow 
as i j ,  [+ 00. Thus (4) provides an asymptotically accurate higher-order boundary 
condition which can be applied at the outer boundaries of a computational domain 
that has been truncated to a large but finite fj = Ymas and y" = [,,,. The above equation 
displays the algebraic decay towards the Blasius boundary layer as [+ co. 
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FIGURE 2.  (a) Contour plot of the streamwise component of the mean velocity field. There are 19 
contour lines running from 0.05 near the walls to 0.95 away from the walls. Also shown is a vector 
plot of the cross-stream velocity components, (b). 
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FIGURE 3. Velocity components along the streamwise direction and along the corner bisector plotted 
against distance from the cornerline along the corner bisector (s). Owing to boundary layer scaling 
the actual velocity component along the corner bisector is order (Re)lI2 smaller than the streamwise 
component. 

The governing equations (1) can be solved with wall boundary conditions and 
asymptotic outer boundary conditions (equation (4)) to obtain the laminar corner 
layer. This problem of obtaining the corner mean flow has been addressed by many 
authors (Carrier 1947; Pearson 1957; Rubin & Grossman 1971; Desai & Mangler 
1974; Ghia 1975) with varying degrees of approximations applied to the governing 
equations and the boundary conditions. Here we have employed a Chebyshev-spectral 
AD1 technique in order to solve the corner layer equations. The spectral discretization 
will provide the exponential accuracy needed for accurate stability calculations. In the 



192 S.  Balachandar and M .  R. Malik 

numerical solution the outer boundary is placed at 77irnaz = ~,,, = 25 and the 
computational domain is discretized with 85 Chebyshev Gauss-Lobatto points along 
both the V- and [-directions. A third-order-accurate asymptotic boundary condition 
(equation (4)) is applied at the outer edges of the computational domain. Even- 
symmetry about the corner bisector is imposed on the mean flow solution in order to 
accelerate convergence towards the final solution. Results obtained from this technique 
compare favourably with those of Rubin & Grossman (1971) and Ghia (1975). Figure 
2 shows contours of streamwise velocity and a vector plot of the cross-stream velocity. 
Figure 3 shows the velocity profiles plotted along the corner bisector. An inflection 
point in the streamwise velocity profile at 

- 

= f z 2.4 is evident. 

3. Stability analysis 
The stability of the laminar base flow to small perturbations can be investigated 

through the standard linear stability analysis. A quasi-parallel flow assumption for the 
base flow along the streamwise direction will be made about the point x = x*, by 
neglecting the slow streamwise variation of the mean flow. In the stability analysis the 
streamwise coordinate is centred about the point x = x* and the two wall normal 
coordinates are non-dimensionalized uniformly with 2/2x* as the lengthscale 
defining a new set of non-dimensional coordinates as 

Y Re'/2, y = . \ /2~*  Z Re1/'. 
x-x* 

Re1/', 7 = 
5=,/2x* d2X 

(5) 

Similarly all three components of velocity are uniformly non-dimensionalized by the 
free-stream velocity U, resulting in a non-dimensional locally parallel mean flow (zinL, 
om,$,) given by 

u, = zi, ern = 0(2Re)-l/', 14, = $(2Re)-l/' 
Velocity and pressure perturbations of the following form (normal mode anastaz) can 
be superimposed on to the mean flow, 

u p  = Gp(% exp Mat- 4 1 ,  u p  = fip(r, 0 exp N.5- 4 1 ,  ( 74  b) 
w p  = $p(% exp Mat- 4 1 ,  P p  = Pp(% 0 exp M.5- 4 1 ,  (7c, 4 

and the total velocity and pressure when substituted into the Navier-Stokes equation 
and the incompressibility condition and linearized results in the following stability 
equations : 

iai 
where the operator 

-a2+-+- 

In the above temporal stability formulation, the input parameters to the stability 
analysis, a and Re, are respectively the streamwise wavenumber and Reynolds number 
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and w is the resulting complex eigenvalue whose real part w, represents the disturbance 
frequency and imaginary part wi corresponds to the disturbance growth rate. Hence if 
wi > 0, corner flow is susceptible to unstable small amplitude disturbances. 

Boundary conditions for the two-dimensional viscous stability analysis are no-slip 
and no-penetration conditions at the solid boundaries. Appropriate outer velocity 
boundary conditions for the stability analysis depend on the disturbance mode to be 
captured. Inflectional instability modes can be represented both by homogeneous 
Dirichlet and homogeneous Neumann boundary conditions. Viscous modes which 
become two-dimensional Tollmein-Schlichting modes in the limit of 7 = <-+ co can be 
captured with homogeneous Neumann outer boundary condition. Viscous modes 
which asymptotically merge with oblique Tollmein-Schlichting modes in the limit of 
7 = 5- 00 require homogeneous mixed boundary condition. In all the above cases, 
artificial pressure boundary conditions can be avoided with a fully staggered grid. 

Upon spatial discretization, the above stability equations (8) along with the 
boundary conditions reduce to a generalized matrix eigenvalue problem. With N grid 
points along each of the 7- and c-directions the size of the matrix eigenvalue problem 
is nearly 4N2 x 4N2 and the computational cost of solving the eigenvalue problem using 
standard eigenvalue routines (from IMSL and EISPACK) scales as O(N6). Therefore 
computational time and memory places stringent limitations on the spatial resolution. 
The following symmetry conditions about the corner bisector: 

symmetric mode : 

q 7 ,  !3 = G,(L r>, q 7 >  !3 = +,(Q 71, d , h  0 = d,(L 7); 

q v ,  !3 = - q c ,  r>, q 7 ,  L9 = - +,(L 71, d , h  L9 = -d& r>, 

(9 4 
antisymmetric mode : 

(9 b) 
can be used to reduce the size of the matrix four-fold, but the eigenvalue problem still 
remains formidable. Therefore, here we consider two simpler problems: (i) one- 
dimensional bisector stability analysis, where the stability of the bisector profile alone 
is considered; (ii) two-dimensional inviscid stability analysis in the limit of Re --f 00. 
The inviscid approximation reduces the size of the discretized matrix sixteen-fold and 
the computational cost sixty-four-fold over the corresponding viscous stability 
analysis. 

3.1. Bisector instability 
We will first consider the effect of the inflectional profile by studying the simpler 
problem of the one-dimensional stability of the velocity profile along the corner 
bisector. Instead of the Cartesian coordinates 7 and 6 a new orthogonal coordinate 
system s and r will be considered, where s is along the corner bisector. In the 
transformed coordinates a locally parallel flow assumption is made by ignoring the 
variations in the mean flow along the streamwise 6- and tangential r-directions and the 
stability of this one-dimensional base flow to disturbances of the following form is 
considered : 

( ~ ] e x p ~ i ( a 6 + ~ r - w t ) ~ .  (10) 

The results obtained from this bisector stability analysis will be presented below to 
provide qualitative understanding of the effect of the inflectional nature of the base 
flow on the overall stability. Figure 4 shows the temporal growth rate (imaginary part 



194 

0.03 

S.  Balachandar and M .  R. Malik 

" " ' " ~ " " " ' ~ ' " ~ ~ ~ ' " " " ~  

- IV 

FIGURE 4. Growth rate obtained from the bisector instability analysis us. a: case I, Re = 5000; 
case 11, Re = 4.5 x lo4; case 111, Re = 1.25 x lo5. Case IV: growth rate us. Re for a = 0.21. 
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FIGURE 5. Frequency obtained from the bisector instability analysis us. a: case I, Re = 5000; case 
11, Re = 4.5 x lo4; case 111, Re = 1.25 x lo5. Case IV: frequency us. Re for CL = 0.21. 

of w )  of the disturbance plotted against streamwise wavenumber a at three different 
Reynolds numbers, Re = 5000 (case I); 4.5 x lo4 (case 11) and 1.25 x lo5 (case 111). 
Two-dimensional disturbances corresponding to /3 = 0 are the most amplified and 
results corresponding to this case only will be presented. The outer edge of the 
computational domain is chosen to be s,,, = 25 and is discretized by 85 Chebyshev 
Gauss-Lobatto points ; asymptotic boundary conditions are applied at the outer edge. 
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The results presented are well converged and show insensitivity to the exact number of 
grid points, location and nature of the outer boundary condition. Also plotted in figure 
4 is growth rate us. (Re)”2 for a = 0.21 (case IV). A critical Reynolds number of Recrit = 

435.0 is obtained and the corresponding critical streamwise wavelength, acrit = 0.21 
and the critical frequency, (wCriJT = 0.1. This result, compared with the critical 
Reynolds number of 9.1 x lo4 for the Blasius profile, shows that the inflection point 
induced by the streamwise corner has the potential to decrease the critical Reynolds 
number by as much as two orders of magnitude. Owing to its inviscid nature, the 
growth rates for the bisector profile are also much larger than those of the 
Tollmien-Schlichting disturbance in the Blasius boundary layer. Figure 5 shows the 
frequency (w,) variation corresponding to the four cases discussed above. As expected 
the frequency varies linearly with a for large values of the wavenumber and is almost 
independent of the Reynolds number. 

3.2. The two-dimensional inviscid eigenvalue problem 
With the above encouraging results we will consider the two-dimensional inviscid 
instability of the corner flow in the limit of Re + co. In this limit the viscous terms drops 
out of (8) .  It should also be noted that in the limit of infinite Reynolds number the 
mean flow is purely streamwise, since in the boundary layer approximation the cross- 
stream velocities, 0, and ti,m, are O(Re-l”) smaller than the streamwise velocity. Even 
in this limit, the secondary effect of the cross-stream velocities and the associated 
streamwise vorticity is still present in terms of the inflectional nature of the streamwise 
velocity field. Equation ( 8 )  can therefore be simplified to 

. , .  ” .  ad -lwvp+u,laO = -2, 
a7 

. A  1 . 1  ad, -lwwp+u,lawp = --, 
at: 

The above linear momentum and continuity equations can be combined to form the 
following single higher-order equation for the pressure perturbation (Hall & Horseman 

We will employ a spectral methodology (Canuto et al. 1988) for solving the above 
eigenvalue problem with Chebyshev discretization along the 7- and <-directions. With 
this spatial discretization (12) reduces to a generalized matrix eigenvalue problem of 
the form 

(13) 

With N grid points along each of the 7- and <-directions the size of the matrix 
eigenvalue problem is N2 x N2. Symmetry conditions about the corner bisector are used 
to reduce the size of the matrix four-fold. 

In the inviscid limit the appropriate boundary condition to be applied on the solid 
boundaries for the velocity eigenfunctions is no penetration. From ( 1  1 b) and ( 1  1 c) the 

0 

a 
A$”, = - Bjp.  
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FIGURE 6. Growth rate us. ct obtained from the inviscid instability analysis for the first two most 
unstable disturbance modes. Solid line corresponds to the most unstable mode and the dashed line 
corresponds to the second most unstable mode. The symbols correspond to the homogeneous 
Neumann pressure boundary condition and the lines to the homogeneous Dirichlet condition. 

corresponding pressure boundary conditions on the solid boundaries are zero normal 
derivatives. The computational domain will be truncated to be a finite square and the 
outer boundary conditions will be imposed at 7 = vmaz and 6 = em,,. The appropriate 
boundary condition for pressure at these outer boundaries is not clear. But far away 
from the corner (7 = ymaz, c = emu,) the streamwise velocity profile is not inflectional 
and will not support inviscid instability. Therefore, it is reasonable to assume that 
@, = 0 at 7 = vmaz and 5 = cmaz. In any case, the eigenvalue problem was solved with 
both Dirichlet (@, = 0) and Neumann (i3jjp/t17 = Q?,/ac = 0) boundary conditions and 
the sensitivity of the stability results to the placement of the outer boundary at 7 = 

ymaz and 5 = em,, and to the number of grid points was also considered. Based on 
these sensitivity tests ymaz = em,, = 25 with 55 Chebyshev Gauss-Lobatto points 
along both the 7- and c-directions was found adequate to provide well converged 
results. Accurate mean flow at these grid points was obtained by a spectral interpolation 
scheme. Both Dirichlet and Neumann boundary conditions for pressure at the outer 
boundaries yielded identical results to five decimal places. 

Only results for the symmetric disturbance case will be presented below. The 
antisymmetric disturbances did not provide any growing solution. This result is to be 
expected since the symmetric disturbances have their peak value along the corner 
bisector, where the base flow is inflectional. On the other hand, antisymmetric 
disturbances result in zero pressure and streamwise velocity perturbations along the 
corner bisector. Although, there are no growing antisymmetric modes in the inviscid 
limit, we anticipate growing antisymmetric (Tollmien-Schlichting-like) viscous modes 
in a full viscous stability problem, but their growth rate will still be smaller than the 
corresponding symmetric mode. 

In figure 6 the growth rate of the most unstable inviscid instability mode is plotted 
as a function of the streamwise wavenumber. The continuous curve corresponds to the 
case where the homogeneous Dirichlet condition is used at the outer boundaries for the 
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FIGURE 7. Frequency us. a obtained from the inviscid instability analysis for the first two most 
unstable disturbance modes. Solid line corresponds to the most unstable mode and the dashed line 
corresponds to the second most unstable mode. 

pressure eigenfunction and the symbols correspond to the case of homogeneous 
Neumann pressure boundary condition. Insensitivity of the results to the exact nature 
of the boundary condition is apparent, indicating that qmas = Cm,, = 25 is adequately 
away from the corner region. Also plotted in this figure is the growth rate of the second 
most unstable model, whose maximum growth rate is nearly two and a half times 
smaller than that of the most unstable mode. The corresponding frequency variations 
are shown in figure 7 as a function of the streamwise wavenumber. A nearly linear 
increase in frequency with wavenumber can be observed. The frequency corresponding 
to the second most unstable mode is slightly smaller than that of the most unstable 
mode. 

The inviscid instability mode with the largest growth rate corresponds to a 
streamwise wavenumber of a = 0.225. This result compares well with results obtained 
from the bisector instability analysis, where a corresponding to the most amplified 
disturbance is 0.21 at Re = 5000 and very slowly increases with Reynolds number. The 
maximum growth rate (imaginary part of w )  obtained from the two-dimensional 
inviscid instability analysis is 0.004 and is much smaller than those obtained from the 
one-dimensional bisector instability analysis. This is because the mean flow in the two- 
dimensional analysis progressively becomes less inflectional away from the corner 
bisector and the overall effect is to reduce the growth rate in comparison with the 
one-dimensional analysis. The frequency (real part of w )  obtained from these two 
instability analysis agrees very well. For example, the non-dimensional frequency of 
the most amplified two-dimensional inviscid mode is 0.1 which compares well with 
w,  = 0.089 and 0.092 for the most amplified bisector modes at Re = 5000 and 4.5 x lo4, 
respectively. 

Figures 8(u) and 8(b) show the real and imaginary parts of the most amplified 
pressure eigenfunction (a = 0.225; w = 0.108 +i0.003 975). Peak values of the real part 
of the pressure eigenfunction occurs along the corner bisector near q = C = 2.5 where 
the mean streamwise velocity profile is inflectional. Although the peak values of the 
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FIGURE 8. Contours of (a) the real and (b)  the imaginary parts of the pressure eigenfunction 
corresponding to the most amplified inviscid disturbance. For the real part there are 21 contour lines 
ranging from - 1.0 (marked 1 )  to 0 (marked L) and for the imaginary part there are 21 contours 
ranging from -0.2 (marked 1) to 0.1 (marked L). 
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FIGURE 9. Contours of the absolute value of the v-velocity eigenfunction corresponding to the most 
amplified inviscid disturbance. For clarity the contours are plotted in two different ranges. In (a) there 
are 19 contours ranging from 1.0 (marked 1) to 19.0 (marked J) and in (b) there are 20 contours 
ranging from 0.1 (marked 1) to 2.0 (marked K). 

imaginary part occur away from the corner bisector closer to the walls, the magnitude 
of the real part dominates the imaginary part. From the pressure eigenfunctions the 
corresponding velocity eigenfunctions can be evaluated based on (1 1). Figures 9 (a) and 
9(b) show contours of the v-eigenfunction plotted in two different ranges. It is clear 
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from this figure that the v-velocity of the disturbance rapidly increases near the critical 
layer where the denominator i(ati, - w )  that occurs in the evaluation of the velocity 
eigenfunctions becomes nearly zero. But the pressure eigenfunction is well behaved in 
this critical layer region and therefore the eigenvalue computations are well resolved. 
The corresponding w-eigenfunctions can be obtained from figure 9 based on the even 
parity of the w- and v-eigenfunctions about the corner bisector. 

4. Conclusions 
Finally we conclude with a few comments on how the above results are relevant in 

explaining the rapid transition observed in zero-pressure-gradient corner flow 
experiments. The two-dimensional inviscid instability analysis, although confirming 
the possibility of an inviscid instability due to the inflectional nature of the mean 
streamwise velocity, does not provide any clue as to the critical Reynolds number for 
this mechanism to be active. On the other hand, the bisector instability analysis, 
although it ignores all variations in the mean flow away from the bisector, yields a 
critical Reynolds number of 435. In any case, these results suggest a possible 
destabilizing inviscid mechanism active starting from a point close to the leading edge 
as compared to the corresponding viscous instability in the Blasius boundary layer. 
These results are consistent with the experimental observations of Zamir (1981) that 
the corner flow becomes transitional at Reynolds numbers z lo4 compared with the 
critical Reynolds number of z 9 x lo4 for the Blasius boundary layer. 

This research was supported by the National Aeronautics and Space Administration 
under NASA Contract No. NAS1-19480 while the first author was in residence at the 
Institute for Computer Applications in Science and Engineering (ICASE), NASA 
Langley Research Center, Hampton, VA 23681-0001. Financial support for the second 
author was provided under NASA contract NAS1- 19299. Work was completed during 
the Transition, Turbulence and Combustion Workshop co-sponsored by ICASE and 
NASA LaRC on June 7-July 2, 1993. 

R E F E R E N C E S  

BARCLAY, W. H. 1973 Experimental investigation of the laminar flow along a straight 135" corner. 

CANUTO, C., HUSSAINI, M.Y., QUARTERONI, A. & ZANG, T. A. 1988 Spectral Methods in Fluid 

CARRIER, G. 1947 The boundary layer in a corner. Q. Appl. Maths 4, 367. 
DESAI, S. S. & MANGLER, K. W. 1974 Incompressible laminar boundary layer flow along a corner 

DHANAK, M. R. 1993 On the instability of flow in a streamwise corner. Proc. R .  SOC. Lond. A 441, 

EL-GAMAL, H. A. & BARCLAY, W. H. 1978 Experiments on the laminar flow in a rectangular 

GHIA, K. N. 1975 Incompressible streamwise flow along an unbounded corner. AIAA J .  13, 902. 
GREGORY, N., STUART, J. T. & WALKER, W. S. 1955 On the stability of three-dimensional boundary 

layers with application to the flow due to a rotating disk. Phil. Trans. R. Lond. SOC. A 248, 155. 
HALL, P. & HORSEMAN, N. J. 1990 The inviscid secondary instability of fully nonlinear longitudinal 

vortex structures in growing boundary layers. ICASE Rep. 90-71. 
LAKIN, W. D. & HUSSAINI, M. Y. 1984 Stability of the laminar boundary layer in a streamwise 

corner. Proc. R .  SOC. Lond. A 393, 101. 

Aeronaut. Q. 24, 147. 

Dynamics. Springer. 

formed by two intersecting planes. R.A.E. T R  74062. 

201. 

streamwise corner. Aeronaut. Q. 29, 75. 



Inviscid instability of streamwise corner $ow 20 1 

MACK, L. M. 1984 Boundary layer linear stability theory. AGARD Rep 709. 
MALIK, M. R., WILKINSON, S. P. & ORSZAG, S. A. 1981 Instability and transition in rotating disk 

flow. AZAA J.  19 1131. 
PAL, A. & RUBIN, S. G. 1971 Asymptotic features of the viscous flow along a corner. Q. Appl. Maths 

29, 91. 
PEARSON, J. R. A. 1957 Homogeneous turbulence and laminar viscous flow. PhD thesis, Cambridge 

University. 
RUBIN, S. G. 1966 Incompressible flow along a corner. J.  Fluid Mech. 26, 97. 
RUBIN, S. G. & GROSSMAN, B. 1971 Viscous flow along a corner: numerical solution of the corner 

STETSON, K. F., THOMPSON, E. R., DONALDSON, J. C. & SILER, L. G. 1983 Laminar boundary layer 

ZAMIR, M. 1981 Similarity and stability of the laminar boundary layer in a streamwise corner. Proc. 

ZAMIR, M. & YOUNG, A. D. 1970 Experimental investigation of the boundary layer in a streamwise 

ZAMIR, M. & YOUNG, A. D. 1979 Pressure gradient and leading edge effects on the corner boundary 

layer equations. Q. Appl. Maths. 24, 169. 

stability experiments on a cone at Mach 8. Part 1:  Sharp cone. AZAA Paper 83-1761. 

R.  Soc. Lond. A 377, 269. 

corner. Aeronaut. Q. 21, 313. 

layer. Aeronaut. Q. 30, 471. 


